
CS 329A, Handout #9Nayak

Acyclic constraint networks

• Dual constraint graph of an acyclic constraint network is a tree

– first characterized in the database literature

– can apply the tree algorithm to solve acyclic networks

• Dual constraint graph may become a tree by removing
redundant edges

AEF

CDE ACE

ABC
A

E
C AE

CE

AC

CS 329A, Handout #9Nayak

Scheduling as constraint satisfaction

• Scheduling problems

– place a set of tasks on a time line

– subject to temporal constraints, resource constraints,
preferences, …

– constraints can be hard or soft and hence…

– often requires optimization, i.e., one tries to maximize the
number and type of constraints that are satisfied

CS 329A, Handout #9Nayak

Repair-based methods for solving CSPs

• Searches in the space of complete assignments

– can use information about the current assignment that is not
available to constructive backtracking

• Particularly useful for solving scheduling problems

– unexpected events often require dynamic rescheduling

– scheduling often involves optimization

– humans appear to find repair-based methods more
“natural”

CS 329A, Handout #9Nayak

Min-conflicts heuristic for repair

• Motivated by the surprising performance of the GDS neural net

• Min-conflicts repair heuristic

– Select a variable that is in conflict

– Assign it a value that minimizes the number of conflicts

• Can be used for both

– hill-climbing

– backtracking through the space of complete assignments

CS 329A, Handout #9Nayak

Hill climbing with min-conflicts

• Initial assignment created using a greedy algorithm

– sequentially assign variables to values that minimize
conflicts with previously assigned variables

• Repair using the min-conflicts heuristic

– current assignment may be the min-conflict assignment

• Continue until a solution is found

– may need to restart

CS 329A, Handout #9Nayak

Backtracking using min-conflicts

function mc-bt(vars-left, vars-done)

if current assignment is consistent then return true

Let v be a variable in vars-left that is in conflict

Remove v from vars-left and add it to vars-done

Let values be the values of v ordered in ascending order

 according to number of conflicts with variables in vars-left

for each value in values do

if value does not conflict with any variable in vars-done then
Assign value to v

if mc-bt(vars-left, vars-done) then return true

endif

CS 329A, Handout #9Nayak

Experiments

• Solves n queens problems up to a million queens

– greedy initialization leads to solutions in constant number
of flips

– random initialization leads to a linear number of flips

• Used in SPIKE for Hubble Space Telescope scheduling

– ten to thirty thousand observations per year

– preprocessing adds inferred constraints, allowing a more
accurate assessment of number of conflicts

• Graph coloring

– Densely-connected graphs are easy for min-conflicts

– Sparsely-connected graphs are difficult for min-conflicts

CS 329A, Handout #9Nayak

Analysis

• Simplified model

– every variable is subject to exactly c binary constraints

– there is only a single solution to the problem

– an incorrect value for variable v conflicts with an arbitrary
value for a connected variable v’ with fixed probability p

• Pr(min-conflicts makes a mistake in repairing v)

≤ (k – 1) e –2(pc – d)2 / c

• Probability of a mistake decreases as

– c becomes large, d becomes small, p increases, k decreases

• More quantitatively correct predictions are made by making
better assumptions about the probability of conflicts between
variables

